Refraction (Using PhET Simulation "Bending Light")

Name:

Setup

- 1. Open the simulation: <u>https://phet.colorado.edu/sims/html/bending-light/latest/bending-light_en.html</u>
- 2. Select "Intro."

3. Align the protractor with the normal and the surface.

4. Turn on the "laser" by clicking on the red button.

$Part \ A - n_1 \le n_2$

1. Set the materials to air and water.

Material Air
Index of Refraction (n) 🔳 1.00 🕨
Air Water Glass
Material Water
Index of Refraction (n) <
Air Water Glass

2. Move the "laser" such that the angle of incidence is 30° .

4. Select 4 more angles of incident and record the angles of incident and refraction in the table.

Angle of Incidence θ_i	$\sin heta_i$	Angle of Refraction θ_r	$\sin heta_r$	$\frac{\sin \theta_i}{\sin \theta_r}$
30°				

5. Calculate the other values in the table.

- 6. Is the angle of refraction always greater than or less than the angle of incidence?
- 7. Calculating the index of refraction.
 - (a) Calculate the average value of $\frac{\sin \theta_i}{\sin \theta_r}$.
 - (b) Use the value calculated in (a) to calculate the index of refraction for water. Verify that this value matches the one given in the simulation.

- 8. Set the materials to air and glass.
- 9. Measure the angle of refraction for five different angles of incidence and record them in the following table.

Angle of Incidence θ_i	$\sin heta_i$	Angle of Refraction θ_r	$\sin heta_r$	$\frac{\sin \theta_i}{\sin \theta_r}$

10. Calculate the other values in the table.

- 11. Is the angle of refraction always greater than or less than the angle of incidence?
- 12. Calculating the index of refraction.
 - (a) Calculate the average value of $\frac{\sin \theta_i}{\sin \theta_r}$.
 - (b) Use the value calculated in (a) to calculate the index of refraction for glass. Verify that this value matches the one given in the simulation.

Part B – $n_1 > n_2$

1. Set the materials to water and air.

Material Water
Index of Refraction (n) <
Air Water Glass
Material Air
Index of Refraction (n) <
Air Water Glass

2. Measure the angle of refraction for five different angles of incidence and record them in the following table.

Angle of Incidence θ_i	$\sin heta_i$	Angle of Refraction θ_r	$\sin \theta_r$	$\frac{\sin \theta_i}{\sin \theta_r}$

- 3. Calculate the other values in the table.
- 4. Is the angle of refraction always greater than or less than the angle of incidence?

- 5. Calculating the index of refraction.
 - (a) Calculate the average value of $\frac{\sin \theta_i}{\sin \theta_r}$.
 - (b) Use the value calculated in (a) to calculate the index of refraction for water. Verify that this value matches the one given in the simulation.
- 6. There is a maximum angle of incidence. This maximum angle is referred to as the critical angle.
 - (a) Use the simulation to find the critical angle. _____.
 - (b) This angle can be calculated by using an angle of refraction of 90°. Calculate the value of the critical angle.

- 7. Set the materials to glass and air.
- 8. Measure the angle of refraction for five different angles of incidence and record them in the following table.

Angle of Incidence θ_i	$\sin heta_i$	Angle of Refraction θ_r	$\sin heta_r$	$\frac{\sin \theta_i}{\sin \theta_r}$

- 9. Calculate the other values in the chart.
- 10. Calculating the index of refraction.

(a) Calculate the average value of
$$\frac{\sin \theta_i}{\sin \theta_r}$$
.

(b) Use the value calculated in (a) to calculate the index of refraction for glass. Verify that this value matches the one given in the simulation.

- 11. There is a maximum angle of incidence. This maximum angle is referred to as the critical angle.
 - (a) Use the simulation to find the critical angle. _____.
 - (b) This angle can be calculated by using an angle of refraction of 90°. Calculate the value of the critical angle.

Part C – Measuring the Index of Refraction of an Unknown Material.

1. Set the materials to air and Mystery A.

Material Air
Index of Refraction (n) 🔳 1.00 🕨
Air Water Glass
Material Mystery A
What is n?

2. Measure the angle of refraction for five different angles of incidence and record them in the following table.

Angle of Incidence θ_i	$\sin heta_i$	Angle of Refraction θ_r	$\sin \theta_r$	$\frac{\sin \theta_i}{\sin \theta_r}$

- 3. Calculate the other values in the chart.
- 4. Calculate the index of refraction of Mystery A.

- 5. Set the materials to air and Mystery B.
- 6. Measure the angle of refraction for five different angles of incidence and record them in the following table.

Angle of Incidence θ_i	$\sin heta_i$	Angle of Refraction θ_r	sin $ heta_r$	$\frac{\sin \theta_i}{\sin \theta_r}$

- 7. Calculate the other values in the chart.
- 8. Calculate the index of refraction of Mystery B.